
＋

Verifying Computation in
Sequestered Encryption

Contribution
It is important to think about how a client
can check if a computation is done
correctly. Since undesired changes to
computation cannot be readily detected,
we extend SE to verify the correctness of
computation.

Usage Model

Summary
● Integrity is an important security

property not addressed by SE.

● This work extends SE to verify
computation by adding metadata to
encrypted types.

● Breaking this mechanism requires a
preimage attack on a cryptographic hash.

Meron Z. Demissie, Lauren Biernacki, Todd Austin

University of Michigan

Correspondence: mdemissi@umich.edu

Introduction
● Sequestered Encryption (SE) is a hardware technology that supports secure

computation on private data.

○ Unlike trusted execution environments (TEEs), SE computation is not
visible to software.

● SE uses two key mechanisms to achieve its goals:

○ Encrypted computation: hides the content of private data from software.

○ Data oblivious programming: eliminates data-dependent control flow and
memory accesses.

Challenges
SE does not guarantee correct computation.

● Server can intentionally rearrange secret computation.
● Hardware errors may occur during computation.

Encrypted Data Type Layout in SE

z

An Abstraction of Verification in SE

Conclusion and Future Work

 +

 +

 10101
 11010
 10111

 11100
 11010
 01011

CLIENT VERIFICATION
ENGINE INCORRECT

some_program.c

ENC_INT square_add(ENC_INT a, ENC_INT b)

{

 ENC_INT result = a * a + b;

 return result;

}

int main(){

 ENC_INT a = 5, b = 6;

 ENC_INT r = square_add(a, b);

 return 0;

}

H(a)

H(a)

H(x)

H(b)

H(r)

Dataflow Graph

Given the hash of inputs a and b as H(a) and H(b):
1. H(x) = F(H(a), H(a), op_mul)

2. H(r) = F(H(x), H(b), op_add)

Combining Function (F)
● It captures any changes in register/memory communication between

instructions.
● It captures any changes in individual instructions.
● Given an instruction with inputs, it must be difficult to map the hashes of the

input to hash of the instruction’s output to ensure strong integrity.

CLIENT VERIFICATION
ENGINEH(r)

● We utilize the unchanging data flow graph of programs,
which stems from data oblivious programming used in SE.

● Once the data flow graph of a program is generated, a hash
associated with the data can be passed through the
graph using a combining function.

● This ongoing work seeks to find ways of simplifying the
cost of client-side verification.

 INT (64b): Sensitive Value

 ENC_INT (128b): Sensitive Value (64b) Salt (64b)

ENC

 ENC_INT (256b): Sensitive Value (64b) Salt (64b) Hash (128b)

VeriSafe SE

